
CS4550

Directed Study

AUTOMATING CONSOLE PORT BASED CONFIGURATON
OF CISCO ROUTER WITH PERL SCRIPT

Prof. Geoffrey Xie Summer02–Quarter

Valter Monteiro Junior
LCDR, Brazilian Navy

September 30, 2002

2

AUTOMATING CONSOLE PORT BASED CONFIGURATON OF CISCO ROUTER

WITH PERL SCRIPT 3

1. What is the problem?3

2. Why are we solving this problem?3

3. How else could this problem be solved?4

4. New Approach5

5. Developing our Experience5

5. Our Experience11

6. Experiment with 2 Routers14

7. Conclusion ..16

8. References ..16

9. Web Links ...17

10. Learning Side Effects18

11. Future Work18

Implement application flows18

Appendix A ..22

Appendix B ..23

Appendix C ..36

Appendix D ..40

3

AUTOMATING CONSOLE PORT BASED CONFIGURATON OF

CISCO ROUTER WITH PERL SCRIPT

1. What is the problem?

In this study we define two distinct networks. One

is a commercial network, consisting of CISCO routers,

switches and workstations; the other is the SAAM

(Server and Agent based Active Network Management)

network with software agents to optimize allocation of

network resources and support user QoS (Quality of

Service) requirements.

The objective is to understand those aspects of

the Cisco IOS (Internetworking Operating System) that

can be configured and/or controlled externally by a

SAAM Agent.

2. Why are we solving this problem?

This is part of an on-going effort to find a

practical method of uploading the SAAM QoS parameters

such as flow definitions and routing table entries into

a CISCO router without altering the IOS in the router.

The SAAM network determines Quality of Service

parameters based on current network conditions and user

4

requirements. These parameters are dynamic and they

must be uploaded into the Cisco routers for them to

take effect. It would be desirable to not require any

modification to the IOS for such uploads. This is

because the IOS is proprietary software. While possible,

it is time-consuming and potentially costly to obtain

the IOS source code from Cisco or arrange for a special

IOS update by Cisco.

3. How else could this problem be solved?

In several previous studies, the focus was on

solving this problem using the Simple Network

Management Protocol (SNMP), the expected choice for

someone who wants to manage a network. But the

researchers discovered problems that are best described

in Cary Colwell paper [Ref. 7]. After extensive

research and experimentation, Cary reported that he did

not believe that the pertinent SNMP Management

Information Base (MIB) data of a Cisco router are

accessible for either reading or writing over the

console serial port. With the SNMP approach, we have to

do something that is not allowed or expected by the

router manufacturer (i.e., Cisco).

5

4. New Approach

With this observation in mind, a CS4552 student

group (spring/2002) changed the approach [Ref. 8].

Instead of working with SNMP, the report of this group

suggested using a script language like PERL to open and

maintain a TELNET connection with a Cisco router

through the console port and utilize the connection to

upload the SAAM parameters.

This new approach has the advantage of using a

natural mechanism with vendor support to change the

routing table and other parameters of the CISCO router

configuration. Two issues, however, require further

study for this approach to be useful. First, the

proposed upload method must have adequate performance

(i.e., speed). Second, the method must work for all key

SAAM QoS related parameters.

5. Developing our Experience

Before describing the solution in detail, we review

some basic concepts and knowledge necessary to this study.

a. CISCO Configuration

This is the main knowledge necessary to design one

solution for controlling a Cisco router. The basic

6

configuration steps can be learned from many sources. In the

Web Links section, there is enough information from which

one can learn to become a good Cisco “programmer”. However,

the most effective method to cover this topic is through

hands-on experience. It’s very interesting to read Ken

Ehresman’s paper – “Configuring CISCO Routers using Telnet”

[Ref. 9] — another independent study report that first talks

about the Perl module Net::Cisco::Telnet.

Two Cisco routers were used in this study. They are…

The routers were booted with the default configuration that

is available in the project archive CD. There is also a TFTP

server that you can use to download different start-

configuration for the CISCO routers.

b. Clock Synchronization

We configured the CISCO Router-1 to work as NTP

(Network Time Protocol) server. We could work with one of

the NTP servers available at the NPS network, but since we

only needed to record the difference between the start and

finish times of commands in a Perl script, a local

implementation seemed to be sufficient.

We synchronized the clocks of router-2 and both

workstations with the NTP server implemented in router-1.

7

Below is a screenshot from one of the workstations

after time zone configuration and all the devices were

synchronized:

To work in the Pacific Time zone we had to make

additional configurations in the CISCO routers which have a

different time zone by default. If we didn’t do that we

would work with 2 times zones. Consequently, the PC

synchronization with the router would generate a “funny”

mistake.

To manually configure the time zone used by the Cisco

IOS software, use the following command in global

configuration mode:

8

Command Purpose

Router(config)#

clock timezone zone

hours-offset

[minutes-offset]

Sets the time zone. The zone argument is

the name of the time zone (typically a

standard acronym). The hours-offset

argument is the number of hours the time

zone is different from UTC. The minutes-

offset argument is the number of minutes

the time zone is different from UTC.

The best place to learn about that is the CISCO web page:

http://www.cisco.com/univercd/cc/td/doc/product/software/ios

122/122cgcr/ffun_c/fcfprt3/fcf012.htm#xtocid28

c. PERL Programming

The development of the required PERL script is the most

important part of this study. Definitely as you try to write

some code you will learn a lot, but you can do it, as we

did, without any kind of prior PERL experience. Of course

the code can be incrementally improved. As you learn more

you can improve the performance of the code. We learned PERL

enough to write the code. The Reference section lists two

books that I consulted [Ref. 1, Ref. 2].

9

It is important to know the basic commands and

philosophy of PERL and know how PERL deals with variables.

Scalars and lists are crucial concepts too, because, in this

particular research, you have to know how to extract state

information from the TELNET session.

Other vital information is in the documentation about

Net::Telnet and Net::Telnet::Cisco PERL modules. The first

one is well described in the chapter 6 of the Network

Programming with PERL book [Ref. 1]. The second module is so

important for our experience that we will talk about it in

the next section.

d. Net::Telnet::Cisco Module

The Net::Telnet::Cisco module provides additional

functionality to Net::Telnet module for dealing with Cisco

routers. Before using this module, it’s necessary to have a

good understanding of Net::Telnet. So it is recommended to

read Appendix A before Appendix B.

Recalling the previous research with SNMP, some things

are easier to accomplish with SNMP (including SNMP PERL

module Net::SNMP). SNMP has three advantages: it’s faster,

handles errors better, and doesn’t use any VTYs on the

router. SNMP does have some limitations in terms of the

types of router parameters that it can modify. In our

10

solution the use of Net::Telnet::Cisco module is critical.

Its documentation is included as Appendix B.

e. Log File

UNIX is the best platform to manage a Log File for the

experiment. The syslog system is a standard part of all

common UNIX and LINUX distribution. Unfortunately, we are

using in this study the Windows NT/2000 log-file

functionality. Windows NT/2000 has a similar facility known

as the Event Log, but it less straightforward. We found some

problems with the Win2K log file, as we could not seem to

set the correct timestamp in the Log File even if the host’s

clock was synchronized win the NTP Server.

f. PERL IDE

Open PERL IDE is an integrated development environment

for writing and debugging PERL scripts, which comes with any

standard PERL distribution under Windows 95/98/NT/2000.

This software is written in Delphi 5 Object Pascal and

PERL and it is Open Source, distributed under Mozilla Public

Licence 1.1 and hosted by SourceForge. To know more about

this tool, visit its project page to get further

information.

Below is a screenshot of the tool. This tool is

available in the project archive CD.

11

5. Our Experience

a. Scenario

We worked with two routers, whose configurations are

described in the with Appendix C, and one PC running with

Windows NT, where we installed the following

applications:

¾ ActiveState distribution of PERL;

¾ ActiveState PERL Package Module;

¾ Kiwi Syslog File;

12

¾ NetTime NTP client for synchronization with NTP

server installed in CISCO router; and

¾ Perl script we developed to open TELNET sessions

with the routers.

b. Time performance

In order to measure the time that it takes for one

single command in PERL script to change the configuration

of a CISCO router, we ran a PERL script that was, in a

nutshell, a loop with 1000 interactions. Inside this loop

we have 2 commands. The first is an rsvp CLI command and

the other one cancels the action performed by the first

Router-2 Router-1

Workstation
PERL - Commands

7 56

1211
10

8 4

2
1

9 3

NTP Server

LogFile

Router Logs

13

command. With this arrangement, we issued a pair of

configuration commands to a CISCO router 1000 times.

It’s important to note that the Perl script was able to

use a single TELNET session with the router to issue all

the 2000 commands. This is possible by increasing the

timeout value for a TELNET session at the router. See

Appendix D – Cisco Router Configuration Considerations.

c. Example Measurement

This is the screenshot of the Perl script running 1000

interactions with one router:

The bottom part of the screenshot with black background

shows time measurements for the interactions:

T1 = 21:27:05.175

14

T2 = 21:34:46.082

T1 – T2 = 7 min 40.907 sec = 460.907 sec

(T1-T2)/2000 = 230.253 ms to execute each command.

6. Experiment with 2 Routers

This time we worked with 2 routers. We opened 2 TELNET

sessions, one in each router.

In this try we could conclude that the time spent to

change the CISCO router configuration when we work with one

router is almost the same as when you work with 2 routers.

We can expand our conclusion and estimate the time to work

with 100 CISCO routers.

a. Time Measurement

This is the screenshot of the Perl script conducting

1000 interactions with two routers:

15

The new timestamps are:

Router-1 t1: 23:55:07.638

Router-1 t2: 00:10:33.848

Router-2: t1: 23:55:07.713

Router-2 t2: 00:10:33.893

The time between the T1 of the router 1 and T2 of the

router 2 show us:

T1 – T2 = 15.23758 min = 926.255 sec

(T1-T2)/4000 = 230.156 ms to execute one command in a

router, working with two routers simultaneously.

Therefore, the difference between the first result with

one router and the second result with two routers is

minimal:

1º result(1 router) – 2º result(2 routers) = 230.253 ms - 230.156 ms = 0.131 ms

16

We can estimate that for 100 routers, the script would spend

about 13.1 ms more to operate all of them simultaneously

than operating one router separately 100 times.

7. Conclusion

This study strongly suggests the feasibility of using

of PERL script as a tool to change a CISCO router’s

configuration such as adding an entry to its routing table.

This study is a big step to towards the main goal that

is to interface SAAM QoS network parameters with a

commercial network. The SNMP approach, very well studied in

previous researches, seems to be less promising in

comparison.

The average time of 0.230 seconds to run a command in a

CISCO router, and the fact that this time doesn’t have a

significant increase when we work with many routers is,

undoubtedly, a very useful result that warrants further

research and implementations.

8. References

1. Network Programming with PERL – Lincoln D. Stein

2. Learning PERL – O’Reilly

3. Net::TELNET PERL Module – Appendix A

17

4. Net::TELNET::Cisco PERL module – Appendix B

5. CCNA – Cisco Press; Wendell Odom

6. Configuring CISCO Routers using Telnet, Key Ehresman

7. Experiment with CISCO MIBs, QoS, and SNMP Features

for Adapting SAAM Flow/Path Based Routing and

Control, Cary Colwell

8. Programming CISCO Router using SNMP, Spring/2002

CS4552 Project Report – Kyriakos Sergis, Michael

Hadley and Valter Monteiro Jr.

9. Web Links

Icon URL Item of interesting

http://sourceforge.net/proj
ects/nettime/

Synchronization

http://www.cisco.com

Cisco web page

http://www.cisco.com/univ
ercd/cc/td/doc/product/sof
tware/ios121/121cgcr/fun
_r/frprt3/frd3003.htm#xtoc
id2298129

Basic System Management Commands –
CISCO
NTP

http://www.perldoc.com/

PERL 5.8.0 Documentation

http://www.perl.org/

PERL news

Net::Telnet::Cisco http://nettelnetcisco.sourc
eforge.net/

Net::Telnet::Cisco PERL module main page
with Documentation, Download, etc..

18

http://www.cpan.org/

Comprehensive PERL Archive Network

http://open-PERL-
ide.sourceforge.net/

Open PERL IDE is an integrated
development environment for writing and
debugging PERL scripts with any standard
PERL distribution under Windows
95/98/NT/2000.

10. Learning Side Effects

The main learning side effects of this Direct Study

were improvement in CISCO router configuration, RSVP

understanding, PERL learning, Log Files configurations,

System Synchronization, NTP Server configuration, TCP/IP

protocol implementation, strengths and weaknesses of TCP/IP

protocols including TELNET, NTP, and FTP.

We also learned some “practical tricks” of network

configuration, implementation, measurement and performance

proof.

11. Future Work

Implement application flows

We started this experiment, but, unfortunately, we

didn’t have enough time to conclude it. It requires 2 PCs

and 1 FTP server. The FTP server is plugged “behind” the

routers, so in order to open a FTP session the packets have

19

to go through both routers. (See picture below.) The first

PC opens 2 FTP sessions. After that the second PC opens a

third FTP session. A PERL script has been run to perform

bandwidth reservation for the third FTP session. One can

watch in the Log File that the last FTP session proceeded

faster than the others.

The result will show that we can effectively change the

configuration of a network with PERL scripts to create a

flow path with specific QoS guarantees for an application.

Router-2 Router-1
FTP Server

Workstation
PERL - Commands

Laptop

7 56

1211
10

8 4

2
1

9 3

NTP Server

LogFile

Router Logs

FTP Request

Repeat same experiments using the LINUX platform

This is very important because Linux is a more suitable

platform for this type of experiments. Using WinNT, we had

some difficulty in time synchronization and dealing with the

20

Log File. After all LINUX is open source and it would be

possible to modify its behavior as required by the

experiments. Another advantage is that PERL seems to work

better with the LINUX platform.

Experiment with different Cisco commands

We only did some tests with just a couple of RSVP

commands in a superficial network. We need to experiment

with all the Cisco commands that will be potentially used by

the SAAM network. We also need to measure the performance of

PERL scripts and their capability to change the CISCO router

configuration in a more realistic network.

Integrate PERL with Java

The Perl scripts need to be integrated into the SAAM

system. As the current SAAM test-bed network were developed

in Java, we need to explore ways to integrate PERL scripts

with a Java program.

There is one application that may help this

integration. JPL – Java/PERL Lingo integration kit is a part

of the commercial release of the PERL software contained in

the “PERL Resource Kit for UNIX” by “O’Reilly Associates”.

JPL was written from scratch by Larry Wall (the creator of

PERL) to allow for the writing of PERL/Java hybrid

21

application. See in the Link session the URL that contains

more information about this product.

There is also a windows resource kit version, but this

version doesn’t come with JPL.

Implement Security – A mandatory future research that we

have to implement in order to have a real product is the

security of this application. We have to develop a Secure

SHell (SSH) application instead of TELNET application. This

is not difficult as this capability is available in CISCO

router and there is support of it in PERL. To do this, the

main sources of information are the chapter 6 of the

Networking Programming with PERL book [Ref. 1] and the CISCO

paper - Configuring Secure Shell on CISCO Routers, which is

in the project archive CD.

22

Appendix A

Net::Telnet PERL Module Documentation

 As this documentation has more than 30 pages, in order to save some

trees, we prefer to indicate the URL where you can find it:

http://theoryx5.uwinnipeg.ca/CPAN/data/Net-Telnet/Net/Telnet.html

23

Appendix B

Net::Telnet::Cisco PERL Module Documentation

NAME

Net::Telnet::Cisco - interact with a Cisco router

SYNOPSIS

use Net::Telnet::Cisco;

my $session = Net::Telnet::Cisco->new(Host =>

'123.123.123.123');

$session->login('login', 'password');

Execute a command

my @output = $session->cmd('show version');

print @output;

Enable mode

if ($session->enable("enable_password")) {

@output = $session->cmd('show privilege');

print "My privileges: @output\n";

} else {

warn "Can't enable: " . $session->errmsg;

}

$session->close;

DESCRIPTION

Net::Telnet::Cisco provides additional functionality to

Net::Telnet for dealing with Cisco routers.

cmd() parses router-generated error messages - the kind that

begin with a '%' - and stows them in $obj->errmsg(), so that

24

errmode can be used to perform automatic error-handling

actions.

CAVEATS

Before you use Net::Telnet::Cisco, you should have a good

understanding of Net::Telnet, so read it's documentation

first, and then come back here to see the improvements.

Some things are easier to accomplish with UCD's C-based SNMP

module, or the all-perl Net::SNMP. SNMP has three

advantages: it's faster, handles errors better, and doesn't

use any VTYs on the router. SNMP does have some limitations,

so for anything you can't accomplish with SNMP, there's

Net::Telnet::Cisco.

METHODS

new - create new Net::Telnet::Cisco object

$session = Net::Telnet::Cisco->new(

[Autopage => $boolean,] # 1

[More_prompt => $matchop,] #

'/(?m:^\s*--More--)/',

[Always_waitfor_prompt => $boolean,] # 1

[Waitfor_pause => $milliseconds,] # 0.1

[Normalize_cmd => $boolean,] # 1

[Send_wakeup => $when,] # 0

[Ignore_warnings => $boolean,] # 0

[Warnings => $matchop,] # see docs

Net::Telnet arguments

[Binmode => $mode,]

[Cmd_remove_mode => $mode,]

[Dump_Log => $filename,]

[Errmode => $errmode,]

25

[Fhopen => $filehandle,]

[Host => $host,]

[Input_log => $file,]

[Input_record_separator => $char,]

[Option_log => $file,]

[Output_log => $file,]

[Output_record_separator => $char,]

[Port => $port,]

[Prompt => $matchop,] # see docs

[Telnetmode => $mode,]

[Timeout => $secs,]

);

Creates a new object. Read `perldoc perlboot` if you don't

understand that.

login - login to a router

$ok = $obj->login($username, $password);

$ok = $obj->login([Name => $username,]

[Password => $password,]

[Passcode => $passcode,] # for Secur-

ID/XTACACS

[Prompt => $match,]

[Timeout => $secs,]);

All arguments are optional as of v1.05. Some routers don't

ask for a username, they start the login conversation with a

password request.

cmd - send a command

$ok = $obj->cmd($string);

$ok = $obj->cmd(String => $string,

[Output => $ref,]

[Prompt => $match,]

[Timeout => $secs,]

[Cmd_remove_mode => $mode,]);

26

@output = $obj->cmd($string);

@output = $obj->cmd(String => $string,

[Output => $ref,]

[Prompt => $match,]

[Timeout => $secs,]

[Cmd_remove_mode => $mode,]

[Normalize_cmd => $boolean,]);

Normalize_cmd has been added to the default Net::Telnet

args. It lets you temporarily change whether backspace,

delete, and kill characters are parsed in the command

output. (This is performed by default)

prompt - return control to the program whenever this string

occurs in router output

$matchop = $obj->prompt;

$prev = $obj->prompt($matchop);

The default cmd_prompt changed in v1.05. It's suitable for

matching prompts like router$, router# , router> (enable) , and

router(config-if)#

Let's take a closer look, shall we?

(?m: # Net::Telnet doesn't accept quoted

regexen (i.e. qr//)

so we need to use an embedded

pattern-match modifier

to treat the input as a multiline

buffer.

^ # beginning of line

[\w.-]+ # router hostname

\s? # optional space

(?: # Strings like "(config)" and

"(config-if)", "(config-line)",

and "(config-router)" indicate

that we're in privileged

27

\(config[^\)]*\) # EXEC mode (i.e. we're enabled).

)? # The middle backslash is only there

to appear my syntax

highlighter.

\s? # more optional space

[\$#>] # Prompts typically end with "$",

"#", or ">". Backslash

for syntax-highlighter.

\s? # more space padding

(?: # Catalyst switches print "(enable)"

when in privileged

\(enable\) # EXEC mode.

)?

\s* # spaces before the end-of-line

aren't important to us.

$ # end of line

) # end of (?m:

The default prompt published in 1.03 was /^\s*[\w().-

]*[\$#>]\s?(?:\(enable\))?\s*$/. As you can see, the prompt was

drastically overhauled in 1.05. If your code suddenly starts

timing out after upgrading Net::Telnet::Cisco, this is the

first thing to investigate.

enable - enter enabled mode

$ok = $obj->enable;

$ok = $obj->enable($password);

$ok = $obj->enable([Name => $name,] [Password =>

$password,]

[Passcode => $passcode,] [Level =>

$level,]);

This method changes privilege level to enabled mode, (i.e.

root)

28

If a single argument is provided by the caller, it will be

used as a password. For more control, including the ability

to set the privilege-level, you must use the named-argument

scheme.

enable() returns 1 on success and undef on failure.

is_enabled - Am I root?

$bool = $obj->is_enabled;

A trivial check to see whether we have a root-style prompt,

with either the word ``(enable)'' in it, or a trailing

``#''.

Warning: this method will return false positives if your

prompt has ``#''s in it. You may be better off calling $obj-

>cmd("show privilege") instead.

disable - leave enabled mode

$ok = $obj->disable;

This method exits the router's privileged mode.

ios_break - send a break (control-^)

$ok = $obj->ios_break;

You may have to use errmode(), fork, or threads to break at

the an appropriate time.

last_prompt - displays the last prompt matched by prompt()

$match = $obj->last_prompt;

last_prompt() will return '' if the program has not yet

matched a prompt.

always_waitfor_prompt - waitfor and cmd prompt behaviour

$boolean = $obj->always_waitfor_prompt;

$boolean = $obj->always_waitfor_prompt($boolean);

Default value: 1

If you pass a Prompt argument to cmd() or waitfor() a String

or Match, they will return control on a successful match of

your argument(s) or the default prompt. Set

29

always_waitfor_prompt to 0 to return control only for your

arguments.

This method has no effect on login(). login() will always

wait for a prompt.

waitfor_pause - insert a small delay before waitfor()

$boolean = $obj->waitfor_pause;

$boolean = $obj->waitfor_pause($milliseconds);

Default value: 0.1

In rare circumstances, the last_prompt is set incorrectly.

By adding a very small delay before calling the parent

class's waitfor(), this bug is eliminated. If you ever find

reason to modify this from it's default setting, please let

me know.

autopage - Turn autopaging on and off

$boolean = $obj->autopage;

$boolean = $obj->autopage($boolean);

Default value: 1

IOS pages output by default. It expects human eyes to be

reading the output, not programs. Humans hit the spacebar to

scroll page by page so autopage() mimicks that behaviour.

This is the slow way to handle paging. See the Paging

EXAMPLE for a faster way.

normalize_cmd - Turn normalization on and off

$boolean = $obj->normalize_cmd;

$boolean = $obj->normalize_cmd($boolean);

Default value: 1

IOS clears '--More--' prompts with backspaces (e.g. ^H). If

you're excited by the thought of having raw control

characters like ^H (backspace), ^? (delete), and ^U (kill)

in your command output, turn this feature off.

Logging is unaffected by this setting.

more_prompt - Matchop used by autopage()

30

$matchop = $obj->prompt;

$prev = $obj->prompt($matchop);

Default value: '/(?m:\s*--More--)/'.

Please email me if you find others.

send_wakeup - send a newline to the router at login time

$when = $obj->send_wakeup;

$when = $obj->send_wakeup('connect');

$when = $obj->send_wakeup('timeout');

$when = $obj->send_wakeup(0);

Default value: 0

Some routers quietly allow you to connect but don't display

the expected login prompts. Sends a newline in the hopes

that this spurs the routers to print something.

'connect' sends a newline immediately upon connection.

'timeout' sends a newline if the connection timeouts. 0

turns this feature off.

I understand this works with Livingston Portmasters.

ignore_warnings - Don't call error() for warnings

$boolean = $obj->ignore_warnings;

$boolean = $obj->ignore_warnings($boolean);

Default value: 0

Not all strings that begin with a '%' are really errors.

Some are just warnings. By setting this, you are ignoring

them. This will show up in the logs, but that's it.

warnings - Matchop used by ignore_warnings().

$boolean = $obj->warnings;

$boolean = $obj->warnings($matchop);

Default value:

/(?mx:^% Unknown VPN

|^%IP routing table VRF.* does not exist.

Create first$

|^%No CEF interface information

31

|^%No matching route to delete$

|^%Not all config may be removed and may

reappear after reactivating

)/

Not all strings that begin with a '%' are really errors.

Some are just warnings. Cisco calls these the

CIPMIOSWarningExpressions.

EXAMPLES

Paging

v1.08 added internal autopaging support to cmd(). Whenever a

'--Page--' prompt appears on the screen, we send a space

right back. It works, but it's slow. You'd be better off

sending one of the following commands just after login():

To a router

$session->cmd('terminal length 0');

To a switch

$session->cmd('set length 0');

Logging

Want to see the session transcript? Just call input_log().

e.g.

my $session = Net::Telnet::Cisco->new(Host => $router,

Input_log =>

"input.log",

);

See input_log() in the Net::Telnet manpage for info.

Input logs are easy-to-read translated transcripts with all

of the control characters and telnet escapes cleaned up. If

you want to view the raw session, see dump_log() in the

Net::Telnet manpage. If you're getting tricky and using

print() in addition to cmd(), you may also want to use

output_log().

32

Big output

Trying to dump the entire BGP table? (e.g. ``show ip bgp'')

The default buffer size is 1MB, so you'll have to increase

it.

my $MB = 1024 * 1024;

$session->max_buffer_length(5 * $MB);

Sending multiple lines at once

Some commands like ``extended ping'' and ``copy'' prompt for

several lines of data. It's not necessary to change the

prompt for each line. Instead, send everything at once,

separated by newlines.

For:

router# ping

Protocol [ip]:

Target IP address: 10.0.0.1

Repeat count [5]: 10

Datagram size [100]: 1500

Timeout in seconds [2]:

Extended commands [n]:

Sweep range of sizes [n]:

Try this:

my $protocol = ''; # default value

my $ip = '10.0.0.1';

my $repeat = 10;

my $datagram = 1500;

my $timeout = ''; # default value

my $extended = ''; # default value

my $sweep = ''; # default value

$session->cmd(

"ping

$protocol

$ip

33

$repeat

$datagram

$timeout

$extended

$sweep

");

If you prefer, you can put the cmd on a single line and

replace every static newline with the ``\n'' character.

e.g.

$session->cmd("ping\n$protocol\n$ip\n$repeat\n$datagram\n"

. "$timeout\n$extended\n$sweep\n");

Backup via TFTP

Backs up the running-confg to a TFTP server. Backup file is

in the form ``router-confg''. Make sure that file exists on

the TFTP server or the transfer will fail!

my $backup_host = "tftpserver.somewhere.net";

my $device = "cisco.somewhere.net";

my $type = "router"; # or "switch";

my $ios_version = 12;

my @out;

if ($type eq "router") {

if ($ios_version >= 12) {

@out = $session->cmd("copy system:/running-config

"

. "tftp://$backup_host/$device-

confg\n\n\n");

} elsif ($ios_version >= 11) {

@out = $session->cmd("copy running-config

tftp\n$backup_host\n"

. "$device-confg\n");

} elsif ($ios_version >= 10) {

34

@out = $session->cmd("write

net\n$backup_host\n$device-confg\n\n");

}

} elsif ($type eq "switch") {

@out = $session->cmd("copy system:/running-config "

. "tftp://$backup_host/$device-

confg\n\n\n");

}

SUPPORT

http://NetTelnetCisco.sourceforge.net/

Mailing lists

nettelnetcisco-announce is for important security bulletins

and upgrades. Very low traffic, no spam, HIGHLY RECOMMENDED!

http://lists.sourceforge.net/lists/listinfo/nettelnetcisco-

announce

nettelnetcisco-users is for usage discussion, help, tips,

tricks, etc.

http://lists.sourceforge.net/lists/listinfo/nettelnetcisco-

users

nettelnetcisco-devel is for uber-hackers; you know who you

are.

http://lists.sourceforge.net/lists/listinfo/nettelnetcisco-

devel

Help/discussion forums

http://sourceforge.net/forum/?group_id=48856

Bug tracker

http://sourceforge.net/tracker/?group_id=48856

SEE ALSO

the Net::Telnet manpage

the Net::SNMP manpage

35

UCD NetSNMP - http://www.netsnmp.org/

RAT/NCAT - http://ncat.sourceforge.net/

AUTHOR

Joshua_Keroes@eli.net $Date: 2002/06/18 17:17:03 $

It would greatly amuse the author if you would send email to

him and tell him how you are using Net::Telnet::Cisco.

As of Mar 2002, 170 people have emailed me. N::T::C is used

to help manage over 14,000 machines! Keep the email rolling

in!

36

Appendix C

Router-1 configuration:

router1#
Using 1658 out of 29688 bytes
!
! Last configuration change at 22:18:03 Pacific Wed Sep 18
2002 by monteiro
! NVRAM config last updated at 22:18:24 Pacific Wed Sep 18
2002 by monteiro
!
version 12.0
service timestamps debug datetime msec localtime show-
timezone
service timestamps log datetime msec localtime show-timezone
service password-encryption
!
hostname router1
!
boot system flash:c2600-d-mz.120-7.T.bin
logging buffered 10000 debugging
no logging console
enable secret 5 1w8SY$/GDaRfBcSEr8F6tbIAKUP1
!
username cs4552 password 7 020116541E165B
username monteiro privilege 15 password 7 091C400C4D041B1E
username xie privilege 15 password 7 15420509502B2728
!
!
!
!
memory-size iomem 10
clock timezone Pacific -7
ip subnet-zero
ip domain-name cs.nps.navy.mil
ip name-server 131.120.18.40
ip name-server 131.120.18.41
!
!
!
!
interface Ethernet0/0
ip address 131.120.8.158 255.255.252.0
no ip directed-broadcast
fair-queue 1200 256 234

37

ip rsvp bandwidth 7500 7500
!
interface Ethernet0/1
ip address 131.120.64.2 255.255.255.224
ip directed-broadcast
full-duplex
fair-queue 1200 256 234
ip rsvp bandwidth 7500 7500
!
router rip
version 2
redistribute static
network 131.120.0.0
!
ip classless
ip route 0.0.0.0 0.0.0.0 131.120.8.1
no ip http server
ip rsvp sender 192.168.1.2 131.120.8.137 TCP 0 0
131.120.8.158 Ethernet0/0 7500
7500
ip rsvp reservation 192.168.1.2 131.120.8.137 TCP 0 0
131.120.8.158 Ethernet0/0
FF LOAD 7500 7500
!
logging trap debugging
logging 131.120.8.137
access-list 1 permit any log
!
line con 0
transport input none
line aux 0
line vty 0 4
exec-timeout 50 0
password 7 104D1A4D504240
login local
!
ntp master 1
no scheduler allocate
end

router1#

38

Router-2 configuration:

router2#
Using 1612 out of 29688 bytes
!
! Last configuration change at 22:55:55 pacific Wed Sep 18
2002 by monteiro
! NVRAM config last updated at 22:56:05 pacific Wed Sep 18
2002 by monteiro
!
version 12.0
service timestamps debug datetime msec localtime show-
timezone
service timestamps log uptime
service password-encryption
!
hostname router2
!
logging buffered 10000 debugging
no logging console
enable password 7 135519175F0D0826
!
username monteiro privilege 15 password 7 02560A5E5F07032D
username xie privilege 15 password 7 15420509502B272868
!
!
!
!
memory-size iomem 10
clock timezone pacific -7
ip subnet-zero
no ip ftp passive
ip domain-name cs.nps.navy.mil
ip name-server 131.120.154.52
ip name-server 131.120.18.40
!
!
!
!
interface Ethernet0/0
description connection to 525 servers
ip address 192.168.1.1 255.255.255.0
no ip directed-broadcast
full-duplex
fair-queue 1200 256 234
ip rsvp bandwidth 7500 7500
!

39

interface Ethernet0/1
ip address 131.120.64.4 255.255.255.224
no ip directed-broadcast
full-duplex
fair-queue 1200 256 234
ip rsvp bandwidth 7500 7500
!
router rip
version 2
network 131.120.0.0
network 192.168.1.0
!
ip default-gateway 131.120.64.2
ip classless
no ip http server
ip rsvp sender 192.168.1.2 131.120.8.137 TCP 0 0
131.120.8.158 Ethernet0/0 7500
7500
ip rsvp reservation 192.168.1.2 131.120.8.137 TCP 0 0
192.168.1.1 Ethernet0/0 FF
LOAD 7500 7500
!
logging 131.120.8.137
access-list 100 permit tcp any any
!
line con 0
login
transport input none
line aux 0
line vty 0 4
exec-timeout 50 0
password 7 130604465E5956
login local
!
ntp clock-period 17208487
ntp server 131.120.8.158 prefer
end

router2#

40

Appendix D

Cisco Router Configuration Considerations

To best repeat this experiment we have to make some

special configurations in CISCO router:

¾ Implement super-users – This will help because it’s not

necessary to enter in the privilege mode after the

login. However, this command is a security issue and

one has to deal with this trade-off.

Commands:

Router-1# username xie pri 15 pass professor.

¾ Increase the TELNET session time out – This will help

because it ensures that a TELNET session can be used to

transport Cisco commands to a router for an extended

period of time even if there may be substantial idle

time between two commands. However, this brings up

another security issue. The best approach may be the

following. In the very beginning of a PERL script we

change this parameter to enable a permanent TELNET

session (never expire) and reset this parameter to the

default value at the end of the script.

Commands:

Router-1# line vty 0 4

Router-1(line)#exec time 0 0

41

PERL script to measure the time for write or erase one

command in CISCO router, working with only 1 router.

#! PERL -w
use strict; #enforce some good programming rules
use Net::TELNET::Cisco;

#Router 1 - Eth0/0
my $router = '131.120.8.158';

#Load TELNET-CISCO module
my $S1 = Net::Telnet::Cisco->new(Host => $router);

#My variable to get the time of the Routers
my @output1;
my @output2;

#login to both router
$S1->login('monteiro','0ne4all');

#sh the timestamp-1
@output1 = $S1->cmd('sh clock');
$S1->cmd('config t');

#simple looping
for (1..1000) {

$S1->cmd('ip rsvp sender 131.120.8.148 192.168.1.3 TCP 0
0 192.168.1.1 Ethernet0/0 3750 7500');

$S1->cmd('no ip rsvp sender 131.120.8.148 192.168.1.3
TCP 0 0 192.168.1.1 Ethernet0/0 3750 7500');
}#end for

#exit priviledge mode
$S1->cmd('exit');

#sh the timestamp-2
@output2 = $S1->cmd('sh clock');

print "Router1 - t-1: @output1\n";
print "Router1 - t-2: @output2\n";

42

#Disable and exit router
$S1->disable;
$S1->close;
PERL script to measure the time for write or erase one

command in CISCO router, working with 2 routers.

#! PERL –w
use strict; #enforce some good programming rules
use Net::Telnet::Cisco;

#Router 1 - Eth0/0
my $router1 = '131.120.8.158';
my $router2 = '131.120.64.4';

#Load TELNET-CISCO module
my $S1 = Net::Telnet::Cisco->new(Host => $router1);
my $S2 = Net::Telnet::Cisco->new(Host => $router2);

#My variable to get the time of the Routers
my @output1;
my @output2;
my @output3;
my @output4;

#login to both router
$S1->login('monteiro','xxxxxx');
$S2->login('monteiro','xxxxxx');

#sh the timestamp-1
@output1 = $S1->cmd('sh clock');
$S1->cmd('config t');
@output3 = $S2->cmd('sh clock');
$S2->cmd('config t');

#simple looping
for (1..1000) {

$S1->cmd('ip rsvp sender 131.120.8.148 192.168.1.3 TCP 0
0 192.168.1.1 Ethernet0/0 3750 7500');

$S1->cmd('no ip rsvp sender 131.120.8.148 192.168.1.3
TCP 0 0 192.168.1.1 Ethernet0/0 3750 7500');

$S2->cmd('ip rsvp sender 131.120.8.148 192.168.1.3 TCP 0
0 192.168.1.1 Ethernet0/0 3750 7500');

$S2->cmd('no ip rsvp sender 131.120.8.148 192.168.1.3
TCP 0 0 192.168.1.1 Ethernet0/0 3750 7500');

43

}#end for

#exit priviledge mode
$S1->cmd('exit');
$S2->cmd('exit');

#sh the timestamp-2
@output2 = $S1->cmd('sh clock');
@output4 = $S2->cmd('sh clock');

print "Router1 - t-1: @output1\n";
print "Router1 - t-2: @output2\n";
print "Router2 - t-1: @output3\n";
print "Router2 - t-2: @output4\n";

#Disable and exit router
$S1->disable;
$S1->close;
$S2->disable;
$S2->close;

